

Calificación de Recursos humanos

Tomadores de Muestras Registro Tomadores de Muestras

Requisitos OPDS

- Resolución 504-01.
- Artículo 5 Establece los requisitos mínimos para la habilitación de los laboratorios. El inciso 2 dice que cada laboratorio debe:

"Emplear métodos de muestreo y análisis de acuerdo a normas USEPA, S.M., NIOSH, OSHA y ASTM. Deberá contar con el equipamiento, estándares de calibración, y personal acordes a la calidad y requisitos exigidos por las normas mencionadas."

- Artículo 11 Certificados de cadena de custodia habla del personal de muestreo que queda registrado en la Cadena de Custodia.
- Artículo 18 Profesionales solicita que los analistas estén debidamente matriculados por los Colegios o Consejos profesionales respectivos.

Requisitos OPDS

- Marzo de 2012 la OPDS informa sobre la necesidad de la inscripción en un Registro de tomadores de Muestras.
- Registro Requisitos para la inscripción

Respuesta de CALIBA

Existía

Un registro

Un curso

Modalidad presencial

Vacantes limitadas

Curso a Distancia ----> IRAM ----> ReToMa

El Curso: Módulo Introductorio

1

Como Utilizar la Plataforma Educativa Interface

Objetivos

Módulo 1 Presentación de la metodología e-learning.

La finalidad de este curso es proporcionarles a los participantes una visión general de la aplicación e-learning interface®. Para ello, haremos un breve recorrido por los menús y herramientas del sistema que nos posibilitarán asistir a un curso como si de una clase presencial se tratara. Además, la plataforma interface® es un potente sistema de gestión del conocimiento, permitiéndonos el acceso a diferentes contenidos propuestos por el docente.

Los participantes en un curso a través de la plataforma Interface®, podrán actuar entre sí y con el docente; el sistema permite el trabajo en grupo y la comunicación tanto síncrona como asíncrona.

Desarrollo del módulo.

- ¿Qué es Interface®?
- El escritorio.
- Las herramientas.
- Los Contenidos.
- La evaluación.
- Solución de problemas

El Curso: Módulo Generalidades

- Teoría del Muestreo. Estadística Básica.
- Tipos de Muestreo (aleatorio, sistemático, etc.). Tipos de muestras
- Población y Muestra. Estimadores de Distribución.
 Representatividad.
- Distribución Normal. Teorema Central del Límite Ejemplos
- Cantidad de muestras necesarias Controles de Calidad en Campo
- Inspección por atributos. Norma IRAM 15
- Muestreo al azar. Norma IRAM 18

El Curso: Módulo Generalidades

- Tipos de envases, preservación y transporte de las muestras.
- Cadena de Custodia.
- Aseguramiento de la Calidad. Normas USEPA y ASTM -
- Calibración de equipos de campo Determinaciones IN-SITU
- Mantenimiento del equipamiento Seguridad en Campo
- Preservación y Manipulación de muestras para distintas matrices
- Planificación. Higiene y seguridad en las operaciones de campo.
- Ejercicios Prácticos.

- Muestreo de aguas. Objetivos.
- Conceptos básicos sobre la ecología de ríos y lagos. Relación entre limnología y control del medio abiótico.
- Muestreo de cuerpos receptores superficiales en relación a las descargas. Efectos de dilución.
- Determinación de parámetros in-situ: pH., conductividad, O.D., O.R.P., temperatura. Calibración de instrumentos de campo.
- Conceptos básicos sobre la hidrogeología de aguas subterráneas. Acuíferos libres y confinados. Vulnerabilidad de acuíferos. Interpretación básica de un estudio hidrogeológico

- Freatímetros. Dinámica.
- Muestreo de aguas subterráneas. Método de low-flow.
 Precauciones en el muestreo para la determinación de compuestos orgánicos volátiles.
- Conceptos básicos sobre el tratamiento de efluentes.
 Ingeniería básica. Sistemas de descargas: cámaras de aforo.
 Canaleta Parshall. Placa vertedero.
- Determinación de parámetros in-situ: Medición de nivel piezométrico a boca de pozo o cota IGM, espesor de fase libre.

- Muestreo puntual, compuesto y compuesto compensado.
- Determinación de parámetros in-situ:
 - pH,
 - Oxígeno disuelto ,
 - Temperatura,
 - Conductividad,
 - Cloro libre y cloro total
- Conceptos básicos sobre sistemas de potabilización de aguas.
- Ingeniería básica de tratamiento y distribución. Cloración.
- El muestreo desde tanques, grifos y bebederos.

- Sanitización de surtidores por hisopado y aspersión.
- Muestreo con fines de análisis microbiológicos y fisicoquímicos. Medición de cloro libre y desactivación, en caso de ser detectado.
- Normas USEPA, ASTM, WHO, OCDE, Standard Methods for the Analysis of Water and Wastewater según APHA.

El Curso: Módulo Suelos, RS y Barros

- Conceptos básicos de edafología.
- Procesos pedogénicos. Textura. Horizontes y procesos principales en cada horizonte. Retención y alteración de la contaminación.
- Indicadores de calidad del suelo.
- Muestreo de suelos.
- Muestras disturbadas y no disturbadas.
- Barrenos, testigos. Calicatas.
- Composición de muestras. Diagramación del muestreo.

El Curso: Módulo Suelos, RS y Barros

- El muestreo con fines de seguimiento de remediación,
- Definiciones sobre residuos.
- Residuos especiales y peligrosos.
- Barros de plantas de tratamiento. Características. Muestreo.
- Normas USEPA SW-846.
- Suelos contaminados: hidrocarburos, metales pesados, sustancias lixiviables
- Muestreo de residuos sólidos urbanos o industriales

- Generalidades
- Conceptos básicos de meteorología. Circulación planetaria.
- Celda de Hadley y Ferrell. Verticalidad de la atmósfera.
- Procesos en la tropósfera y en la estratósfera.
- La calidad del aire. Indicadores.
- Emisiones gaseosas. Concentración y caudal másico. Fuentes fijas, fuentes móviles, fuentes extensas.
- Emisiones difusas.
- Unidades. Relación entre las unidades: ppm
 → mg/m³.
 Condiciones de presión y temperatura.

- Emisiones Gaseosas de fuentes fijas.
- Conceptos básicos sobre combustión. Concentraciones esperables. Contaminantes primarios y secundarios.
 - Condiciones de las chimeneas.
 - Altura.
 - Edificios cercanos.
 - Orificios de toma de muestra.
 - Accesibilidad.
- Concepto de isocineticidad.
- Determinación de material particulado total y PM10. Normas USEPA e IRAM.

- Cantidad de puntos y ubicación.
- Velocidad. Tubo de Pitot.
- Peso molecular y humedad. Normas USEPA e IRAM.
- Métodos de referencia para gases de combustión.
- Métodos alternativos: medidores por celdas electroquímicas.
 Limitaciones.
- Relación entre las emisiones y la afectación a la calidad del aire.
- El modelo bigaussiano. La resolución 242/97. -

- El modelado de la emisión. Aplicación de etapas 1, 2 y 3.
- Información necesaria para correr modelos.
- Aire Ambiente.
- La calidad del aire.
- Diferencias entre inmisión, emisión y ambiente laboral.
- Diseño de un sistema de monitoreo de calidad del aire.
- Consideraciones básicas. Manipulación de filtros de muestreo.
 Cuidados en la manipulación y el trasporte. Norma ASTM y recomendaciones generales.

- Sistemas de medición continua.
- Instrumentación. Calibración.
- Uso de normas NIOSH, OSHA, ASTM. Adaptación. Períodos de muestreo.
- El caudal y el tiempo.
- Tipos de impingers.
- Material particulado sedimentable. Norma ASTM y otras.
- Precauciones.

Capacitaci ertificado de

Independientes, Bromatológicos, **Ambientales y Afines**

IRAM y CALIBA, certifican que:

Carlos Alberto López

D.N.I: 31.333.777

ha aprobado el curso:

TOMADORES DE MUESTRAS AMBIENTALES

Con una duración total de 44 horas. Certificado de Registro Nº. MA 122684

Buenos Aires, 4 de Marzo de 2013

ang. Osvaldo D. Petroni

Director de Normalización

Lic. Sergio Turquia

En el futuro

Muestras Representativas y Trazables

Un correcto muestreo

Una correcta preservación

Representativas

Una correcta medición de parámetros "in situ"

Un correcto "holding time"

En el futuro

Registro

Hojas de Campo

Cadena de custodia

Trazables

Equipamiento

Identificación

Patrones

